IAHR, founded in 1935, is a worldwide independent member-based organisation of engineers and water specialists working in fields related to the hydro-environmental sciences and their practical application. Activities range from river and maritime hydraulics to water resources development and eco-hydraulics, through to ice engineering, hydroinformatics, and hydraulic machinery.
Log On
About IAHRDirectoryCommitteesMy IAHRNews & JournalseLibraryeShopEventsJoin IAHRWorld CongressDonate
spacer.gif eLibrary
spacer.gif eLibrary
You are here : eLibrary : IAHR World Congress Proceedings : 36th Congress - The Hague (2015) ALL CONTENT : Sediment management and morphodynamics : Bed-load particle motion in supercritical open channel flow
Bed-load particle motion in supercritical open channel flow
Supercritical sediment-laden open channel flows occur in many hydraulic structures including dam outlets, weirs, and bypass tunnels. Due to high flow velocities and sediment flux severe problems such as erosion and abrasion damages are expected in these structures (Jacobs et al., 2001). Sediment bypass tunnels (SBT), as an effective measure to decrease reservoir sedimentation by bypassing sediments during floods, are exceptionally prone to high abrasion causing significant annual maintenance cost (Sumi et al., 2004; Auel and Boes, 2011). The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zurich conducted a laboratory study to counteract these negative effects (Auel, 2014). The main goals of the project were to analyze the fundamental physical processes in supercritical flows as present in SBTs by investigating the mean and turbulence flow characteristics (Auel et al., 2014a), particle motion (Auel et al., 2014b; 2015b), and abrasion development caused by transported sediment. Besides new insights into the three listed topics, paramount interest is given to their inter-relations and the development of an easily applicable abrasion prediction model (Auel et al., 2015a). This paper presents selected results on the second topic, i.e. the analysis of saltation trajectories of single coarse particles in supercritical flow.
File Size : 456,298 bytes
File Type : Adobe Acrobat Document
Chapter : IAHR World Congress Proceedings
Category : 36th Congress - The Hague (2015) ALL CONTENT
Article : Sediment management and morphodynamics
Date Published : 18/08/2015
Download Now