IAHR, founded in 1935, is a worldwide independent member-based organisation of engineers and water specialists working in fields related to the hydro-environmental sciences and their practical application. Activities range from river and maritime hydraulics to water resources development and eco-hydraulics, through to ice engineering, hydroinformatics, and hydraulic machinery.
Log On
About IAHRDirectoryCommitteesMy IAHRNews & JournalseLibraryeShopEventsJoin IAHRWorld CongressDonate
spacer.gif
spacer.gif eLibrary
spacer.gif eLibrary
You are here : eLibrary : IAHR World Congress Proceedings : 36th Congress - The Hague (2015) ALL CONTENT : Water engineering : Head losses in sewer junction
Head losses in sewer junction
Author : CORRADO GISONNI (1) & MICHAEL PFISTER (2)
ABSTRACT
The functionality of sewer networks is strongly affected by the correct operation of their appurtenances; the dendritic structure of urban drainage systems implies that junction manholes represent a crucial hydraulic structure, allowing two conduits merging into one. Hydraulic features of combining flows become quite complex when supercritical flows are involved, as in the case of steep urban context, with consequent formation of shockwaves and surging phenomena. Former studies conducted by Gisonni and Hager resulted in an optimized layout of sewer junctions operated under supercritical approach flow conditions. Recently, an extensive experimental campaign was performed on a physical model with generalized geometrical conditions, including various conduit diameters. Furthermore, physical model tests have been used to implement and validate a numerical model, aiming to explore a wider range of junction angles, which were limited to 45กใ and 90กใ for the physical model. In particular, the numerical model focused on the flow condition where both approach flows are supercritical. Based on the dataset constituted from both physical and numerical model results, comprehensive equations are proposed for the prediction of energy losses at junction manholes with different upstream and lateral conduit diameters, with particular reference to supercritical combining flows.
File Size : 507,343 bytes
File Type : Adobe Acrobat Document
Chapter : IAHR World Congress Proceedings
Category : 36th Congress - The Hague (2015) ALL CONTENT
Article : Water engineering
Date Published : 19/08/2015
Download Now