IAHR, founded in 1935, is a worldwide independent member-based organisation of engineers and water specialists working in fields related to the hydro-environmental sciences and their practical application. Activities range from river and maritime hydraulics to water resources development and eco-hydraulics, through to ice engineering, hydroinformatics, and hydraulic machinery.
Log On
About IAHRDirectoryCommitteesMy IAHRNews & JournalseLibraryeShopEventsJoin IAHRWorld CongressDonate
spacer.gif eLibrary
spacer.gif eLibrary
You are here : eLibrary : IAHR World Congress Proceedings : 36th Congress - The Hague (2015) ALL CONTENT : Water engineering : Fluid-structure-interaction in pipe coils during hydraulic transients: numerical and experimental an...
Fluid-structure-interaction in pipe coils during hydraulic transients: numerical and experimental analysis
Author : DAVID FERRAS(1,2)
The paper presents the analysis of the effect of Fluid-Structure Interaction (FSI) occurring during hydraulic transients in pipe coils, in particular the main developments and findings. The research work comprises the development of mathematical models, their numerical implementation and their validation as compared with experimental evidence. The aim is to model the behavior of toric pipes during hydraulic transients considering both axial stress waves in the pipe-wall and fluid conservation principles. Three FSI mechanisms are taken into account: the shear stress generated between the fluid and the pipe-wall, the axial movement of the pipe induced by its radial deformation and the pipe movement generated by an imbalance of forces at junctions and boundaries. Hence, Poisson, junction and friction coupling are implemented. To describe the coil structural behavior two conceptual models are developed: the first representing the coil as a straight pipe with a moving valve, and the second assuming independent axial deformation in each coil ring. Although the first approach allows an easier generalization of the method, the second model describes more accurately the FSI problem in the pipe coil as experimentally observed. The paper novelty is the identification and description of a FSI phenomenon occurring in coils by means of a four-equation model.
File Size : 1,350,890 bytes
File Type : Adobe Acrobat Document
Chapter : IAHR World Congress Proceedings
Category : 36th Congress - The Hague (2015) ALL CONTENT
Article : Water engineering
Date Published : 30/09/2015
Download Now