IAHR, founded in 1935, is a worldwide independent member-based organisation of engineers and water specialists working in fields related to the hydro-environmental sciences and their practical application. Activities range from river and maritime hydraulics to water resources development and eco-hydraulics, through to ice engineering, hydroinformatics, and hydraulic machinery.
Log On
About IAHRDirectoryCommitteesMy IAHRNews & JournalseLibraryeShopEventsJoin IAHRWorld CongressDonate
spacer.gif
spacer.gif eLibrary
spacer.gif eLibrary
You are here : eLibrary : IAHR Asia Pacific Division Proceedings : 19th IAHR APD Congress, Hanoi 2014 : Session 1: ENVIRONMENTAL HYDRAULICS : EFFECT OF ASPECT RATIO ON FLOW PATTERNS AND RESISTANCE CHARACTERISTICS AROUND EMERGENT GROYNES
EFFECT OF ASPECT RATIO ON FLOW PATTERNS AND RESISTANCE CHARACTERISTICS AROUND EMERGENT GROYNES
Author : KAZUKI YONEMORI(1), ICHIRO KIMURA(2) & YASUYUKI SHIMIZU(3)
Groynes are recognized to have a role on preventing bank erosion because they act as flow resistance and decrease velocity near banks. In general, water surface is elevated under larger flow resistance. However, if groynes are installed, river bed at the main channel part is scoured. So, groynes has those two opposite effects on affecting water elevation. Interaction between those two opposite effects seem to have key factor for determining water level though such features have not yet been fully discussed. In this study, we try to clarify the effects of groyne interval on flow resistance by both experimental and numerical approaches under fixed bed conditions. The experimental results showed that the resistance changes according to the groyne interval and it takes a peak at a certain value of the aspect ratio. If the aspect ratio is small, an isolated separated vortex moves along the junction one by one. However, if the aspect ratio becomes larger, multi vortices can exist together at the junction. The numerical results showed that scale of vortex depends on the momentum thickness. If groyne interval is small, momentum thickness increases along the entire interval. Thus, the vortex is amplified as it goes downstream. If the groyne interval is larege, the momentum thickness takes peak within the interval. Thus, after the point where the momentum thickness takes peak, the vortex becomes attenuated. It is also shown that the momentum exchange rate at the boundary between the mainstream and the groyne region related to scale of vortex, which have close influence on determining flow resistance due to groynes.
File Size : 5,021,695 bytes
File Type : Microsoft Word Document
Chapter : IAHR Asia Pacific Division Proceedings
Category : 19th IAHR APD Congress, Hanoi 2014
Article : Session 1: ENVIRONMENTAL HYDRAULICS
Date Published : 10/03/2015
Download Now