IAHR, founded in 1935, is a worldwide independent member-based organisation of engineers and water specialists working in fields related to the hydro-environmental sciences and their practical application. Activities range from river and maritime hydraulics to water resources development and eco-hydraulics, through to ice engineering, hydroinformatics, and hydraulic machinery.
Log On
About IAHRDirectoryCommitteesMy IAHRNews & JournalseLibraryeShopEventsJoin IAHRWorld CongressDonate
spacer.gif eLibrary
spacer.gif eLibrary
You are here : eLibrary : Ice Research and Engineering : 23rd Symposium USA (2016) : Sea Ice : Dissipation of Wave Energy during Wave-Ice Interactions due to Overwash: Experiments and Direct Nume...
Dissipation of Wave Energy during Wave-Ice Interactions due to Overwash: Experiments and Direct Numerical Simulations
Author : Nelli F., D.M. Skene, L.G. Bennetts, M.H. Meylan, J.H. Lee, J.P. Monty, and A. Toffoli
The marginal ice zone (MIZ) is the highly dynamic region of the partially ice covered ocean that separates the open ocean from the quasi-continuous pack ice. It is 10s to 100s of kilometres wide, depending on the season and location. Ocean surface waves are present in the MIZ. They contribute to its dynamic nature both indirectly by breaking up larger floes to leave a more mobile ice cover, and directly by setting the smaller floes in motion. At the same time, the ice cover attenuates wave energy, thus limiting the distance over which they impact the ice. Therefore, models of wave attenuation underpin MIZ models. At present, attenuation models are based on linear wave scattering theory and the use of thin plates to model the floes. However, Toffoli et al (2015, Geophys. Res. Lett., 42) use laboratory experimental measurements of wave attenuation by a single plate to show that these models underestimate the attenuation for moderate wave steepnesses or larger. Here, we extend Toffoli et alís investigation. In particular, we study the contribution of wave overwash of the plate (the wave running over the plateís upper surface) to attenuation. Further, we use direct numerical simulations with the open-source code OpenFOAM to study the relationship between overwash and attenuation. Both the experimental measurements and the numerical simulations show a correlation between transmitted wave energy and overwash.
File Size : 1,097,411 bytes
File Type : Adobe Acrobat Document
Chapter : Ice Research and Engineering
Category : 23rd Symposium USA (2016)
Article : Sea Ice
Date Published : 20/10/2016
Download Now