DONATE

IAHR Document Library


« Back to Library Homepage « Journal of Hydraulic Research 2008 Issue 3

Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools

Author(s): Anton Bergant; Arris S. Tijsseling; John P. Vítkovský; Dídia I.C. Covas; Angus R. Simpson; Martin F. Lambert

Linked Author(s):

Keywords: Air pocket; blockage; cavitation; column separation; fluid–structure interaction; leakage; unsteady friction; viscoelastic behaviour of the pipe-wall; water hammer

Abstract: This two-part paper investigates key parameters that may affect the pressurewaveform predicted by the classical theory ofwater-hammer. Shortcomings in the prediction of pressure wave attenuation, shape and timing originate from violation of assumptions made in the derivation of the classical waterhammer equations. Possible mechanisms that may significantly affect pressure waveforms include unsteady friction, cavitation (including column separation and trapped air pockets), a number of fluid–structure interaction (FSI) effects, viscoelastic behaviour of the pipe-wall material, leakages and blockages. Engineers should be able to identify and evaluate the influence of these mechanisms, because first these are usually not included in standard water-hammer software packages and second these are often “hidden” in practical systems. Part 1 of the two-part paper describes mathematical tools for modelling the aforementioned mechanisms. The method of characteristics transformation of the classical water-hammer equations is used herein as the basic solution tool. In separate additions: a convolution-based unsteady friction model is explicitly incorporated; discrete vapour and gas cavity models allow cavities to form at computational sections; coupled extended water-hammer and steel-hammer equations describe FSI; viscoelastic behaviour of the pipe-wall material is governed by a generalised Kelvin–Voigt model; and blockages and leakages are modelled as end or internal boundary conditions

DOI: https://doi.org/10.3826/jhr.2008.2848

Year: 2008

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions