IAHR Document Library

« Back to Library Homepage « Journal of Hydraulic Research 2017 Issue 5

Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study

Author(s): Pedro Romero-Gomez; Marshall C. Richmond

Linked Author(s):

Keywords: CFD; dispersion; hydro-turbine; intake; Lagrangian particle

Abstract: Studies of the stress urvival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of the hydro-turbine units. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted using a Reynolds-averaged Navier–Stokes turbulence model and an eddy-resolving technique. For the particle-tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release conditions were tested. The modelling assumptions are evaluated with respect to datasets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, USA) at the same discharge and release point modelled in the present work. We found acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.


Year: 2017

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions