IAHR Document Library

« Back to Library Homepage « Journal of Hydraulic Research 2013 Issue 2

3D SPH modelling of hydraulic jump in a very large channel

Author(s): Diana De Padova; Michele Mossa; Stefano Sibilla; Emanuela Torti

Linked Author(s):

Keywords: Hydraulic jumps; separated flows; smoothed particle hydrodynamics models; three-dimensional models; turbulent flows

Abstract: The formation of different undular hydraulic jumps in a very large channel is investigated and reproduced using a weakly-compressible XSPH scheme which includes a mixing-length turbulence model. An analysis of the ability and of the limits of the SPH method to reproduce undular hydraulic jumps is preliminarily performed on reference two-dimensional cases. The numerical description of the three-dimensional jump in a very large channel, where the hydraulic-jump front is trapezoidal and the lateral shock waves induce a large recirculation region along the side walls, is compared with experiments in a laboratory flume on two undular jumps at upstream Froude number equal to 3.9 and 8.3. Acoustic Doppler velocity measurements were compared with SPH instantaneous and time-averaged flow fields in order to evaluate whether the numerical method could help in having a clearer understanding of both hydraulic-jump development and lateral shockwave formation. The predicted free-surface elevations and velocity profiles show a satisfactory agreement with measurements and most of the peculiar features of the flow, such as the trapezoidal shape of the wave front and the flow separations at the toe of the oblique shock wave along the side walls, are qualitatively and quantitatively reproduced.


Year: 2013

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions