IAHR Document Library

« Back to Library Homepage « Proceedings of the 36th IAHR World Congress (Hague, 2015)

A Shallow-Water Model with Depth-Dependent Porosity for Urban Flood Modeling

Author(s): Martin Bruwier; Pierre Archambeau; Sébastien Erpicum; Michel Pirotton; Benjamin Dewals

Linked Author(s): Sébastien Erpicum, Martin Bruwier, Benjamin J. Dewals

Keywords: Porosity; Shallow-water equations; Subgrid model; Urban flood modeling

Abstract: The availability of high-resolution topographic data enables the modeling of urban floods with a high level of accuracy. However, such a modelling has a poor computational efficiency. Subgrid models enable to decrease the computational time by using coarse cells while preserving information from the detailed topographic data to some degree. In particular, shallow-water models with porosity constitute a subgrid model well-adapted for urban flood modeling. In this article, a new set of fully dynamic shallow-water equations with depth-dependent porosities is presented. Then, the implementation of the model is detailed and preliminary results obtained for a theoretical two-dimensional urban area are analyzed. Unlike recent works, the new model solves the fully dynamic shallow-water equations with depth-dependent and anisotropic porosities, a divergent formulation of the bed slope term, a non-staggered grid with quadrilateral cells and an efficient use of look-up tables to store the porosity relations.


Year: 2015

Copyright © 2024 International Association for Hydro-Environment Engineering and Research. All rights reserved. | Terms and Conditions